Evaluation and improvement of multiple sequence methods for protein secondary structure prediction.
نویسندگان
چکیده
A new dataset of 396 protein domains is developed and used to evaluate the performance of the protein secondary structure prediction algorithms DSC, PHD, NNSSP, and PREDATOR. The maximum theoretical Q3 accuracy for combination of these methods is shown to be 78%. A simple consensus prediction on the 396 domains, with automatically generated multiple sequence alignments gives an average Q3 prediction accuracy of 72.9%. This is a 1% improvement over PHD, which was the best single method evaluated. Segment Overlap Accuracy (SOV) is 75.4% for the consensus method on the 396-protein set. The secondary structure definition method DSSP defines 8 states, but these are reduced by most authors to 3 for prediction. Application of the different published 8- to 3-state reduction methods shows variation of over 3% on apparent prediction accuracy. This suggests that care should be taken to compare methods by the same reduction method. Two new sequence datasets (CB513 and CB251) are derived which are suitable for cross-validation of secondary structure prediction methods without artifacts due to internal homology. A fully automatic World Wide Web service that predicts protein secondary structure by a combination of methods is available via http://barton.ebi.ac.uk/.
منابع مشابه
Protein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches
DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...
متن کاملAnalysis of the Effects of Multiple Sequence Alignments in Protein Secondary Structure Prediction
Secondary structure prediction methods are widely used bioinformatics algorithms providing initial insights about protein structure from sequence information. Significant efforts to improve the prediction accuracy over the past years were made, specially the incorporation of information from multiple sequence alignments. This motivated the search for the factors contributing for this improvemen...
متن کاملProtein Secondary Structure Prediction Using RT-RICO: A Rule-Based Approach
Protein structure prediction has always been an important research area in biochemistry. In particular, the prediction of protein secondary structure has been a well-studied research topic. The experimental methods currently used to determine protein structure are accurate, yet costly both in terms of equipment and time. Despite the recent breakthrough of combining multiple sequence alignment i...
متن کاملPROMALS: towards accurate multiple sequence alignments of distantly related proteins
MOTIVATION Accurate multiple sequence alignments are essential in protein structure modeling, functional prediction and efficient planning of experiments. Although the alignment problem has attracted considerable attention, preparation of high-quality alignments for distantly related sequences remains a difficult task. RESULTS We developed PROMALS, a multiple alignment method that shows promi...
متن کاملProtein Secondary Structure Prediction Using Parallelized Rule Induction from Coverings
Protein 3D structure prediction has always been an important research area in bioinformatics. In particular, the prediction of secondary structure has been a well-studied research topic. Despite the recent breakthrough of combining multiple sequence alignment information and artificial intelligence algorithms to predict protein secondary structure, the Q3 accuracy of various computational predi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proteins
دوره 34 4 شماره
صفحات -
تاریخ انتشار 1999